Inhibition of clot formation in deterministic lateral displacement arrays for processing large volumes of blood for rare cell capture.
نویسندگان
چکیده
Microfluidic deterministic lateral displacement (DLD) arrays have been applied for fractionation and analysis of cells in quantities of ~100 μL of blood, with processing of larger quantities limited by clogging in the chip. In this paper, we (i) demonstrate that this clogging phenomenon is due to conventional platelet-driven clot formation, (ii) identify and inhibit the two dominant biological mechanisms driving this process, and (iii) characterize how further reductions in clot formation can be achieved through higher flow rates and blood dilution. Following from these three advances, we demonstrate processing of 14 mL equivalent volume of undiluted whole blood through a single DLD array in 38 minutes to harvest PC3 cancer cells with ~86% yield. It is possible to fit more than 10 such DLD arrays on a single chip, which would then provide the capability to process well over 100 mL of undiluted whole blood on a single chip in less than one hour.
منابع مشابه
Scaling deterministic lateral displacement arrays for high throughput and dilution-free enrichment of leukocytes
A disposable device for fractionation of blood into its components that is simple to operate and provides throughput of greater than 1 mL min−1 is highly sought after in medical diagnostics and therapies. This paper describes a device with parallel deterministic lateral displacement devices for enrichment of leukocytes from blood. We show capture of 98% and approximately ten-fold enrichment of ...
متن کاملDeterministic separation of cancer cells from blood at 10 mL/min.
Circulating tumor cells (CTCs) and circulating clusters of cancer and stromal cells have been identified in the blood of patients with malignant cancer and can be used as a diagnostic for disease severity, assess the efficacy of different treatment strategies and possibly determine the eventual location of metastatic invasions for possible treatment. There is thus a critical need to isolate, pr...
متن کاملA transfer function approach for predicting rare cell capture microdevice performance.
Rare cells have the potential to improve our understanding of biological systems and the treatment of a variety of diseases; each of those applications requires a different balance of throughput, capture efficiency, and sample purity. Those challenges, coupled with the limited availability of patient samples and the costs of repeated design iterations, motivate the need for a robust set of engi...
متن کاملLiquid Sloshing Effect Analysis on Lateral Dynamics of an Articulated Vehicle Carrying Liquid for Various Filled Volumes
In this paper, the consequences of filled volume on the transient lateral dynamic and stabilities boundaries displacement of an articulated vehicle carrying liquid is investigated. First, a sixteen-degrees-of-freedom nonlinear dynamic model of an articulated vehicle is developed. Then, the model is validated by using TruckSim software. Next, the dynamic interaction of the fluid cargo with the v...
متن کاملA Study on Ratio of Loss to Storage Modulus for the Blood Clot
In this study the rheology of blood clot is measured with the help of rotational rheometer. Several shear strain (0.5, 1 and 2%) are applied with two frequencies (5 and 10 Hz) from the incipient time of clot formation and the response of the sample is measured with the form of shear stress and the phase lag which is interpreted with storage and loss moduli. In this study the ratio of loss to st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lab on a chip
دوره 15 10 شماره
صفحات -
تاریخ انتشار 2015